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SYNOPSIS 

A new method for predicting the time to brittle failure of polyethylenes is proposed. The 
method includes modeling slow crack growth in polyethylenes and the experimental de- 
termination of material parameters for the model. The model is based on the concept of 
the crack layer, i.e., a system consisting of the strongly interacting crack and process zone 
and the kinetic equations which govern the crack layer growth. The process zone in poly- 
ethylenes usually appears to be a thin strip of drawn material extending along the crack 
line. This permits a characterization of the crack layer by two parameters: the crack and 
process zone lengths. The two-parameter crack layer kinetic model allows description of 
slow crack growth as the discontinuous (stepwise) process which is commonly observed in 
the brittle fracture of polyethylenes. The model also predicts a relationship between time 
to failure and applied stress, identical to that established experimentally. The material 
parameters of the kinetic model can be determined by experiments on smooth specimens, 
i.e., are independent of slow crack growth and require relatively short-term observations. 
Thus, the combination of the material testing and the mathematical modeling of the crack 
layer evolution is proposed as a method for lifetime prediction in the brittle fracture of 
polyethylenes. 0 1995 John Wiley & Sons, Inc. 

1. INTRODUCTION 

The failure of polyethylene (PE) typically occurs as 
a result of either a shear rupture or a sudden onset 
of instability in a previously slowly growing crack. 
In both cases the time to failure depends greatly on 
temperature. Extensive data regarding the effect of 
temperature upon the relation between the lifetime 
and hoop stress for internally pressurized high-den- 
sity PE  pipes was reported by Williams.' Brown with 
co-workers2-6 conducted experiments on single-edge 
notched tensile specimens and investigated a t  var- 
ious temperatures the time to failure as a function 
of such variables as  applied stress, specimen ge- 
ometry, molecular weight distribution, and branch 
density. Analysis of the observations shows that a t  
room temperature and relatively low-stress PEs may 
serve for decades. For example, the lifetime expec- 
tancy of P E  pipes for natural gas distribution is 
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about 50 years or more. An accelerated test for life- 
time in long-term fracture processes is of a great 
importance for the evaluation of new PEs for en- 
gineering applications. 

It was demonstrated by Brown et al.5r6 for two 
kinds of polyethylene that a certain treatment of 
the experimental results obtained in short-term 
fracture tests (at high temperatures) under creep 
conditions allows a reasonable estimation of the 
long-term lifetime at  room temperature. A formally 
different, but essentially equivalent, way of predict- 
ing the time to failure under creep was developed 
and presented as the universal procedure for PE 
piping materials by Popelar with c o - w o r k e r ~ . ~ ~ ~  Ac- 
cording to these methods, in order to  find the stress 
dependence of the time to failure at a low temper- 
ature, it is necessary to  know the relationship be- 
tween lifetime and stress a t  a high temperature, and 
either to recalculate the data or to  make shifts in 
the stress and time axes following a simple recipe. 
In fact, the mentioned empirical approaches to life- 
time prediction are extrapolations of data obtained 
in the range of variables where the phenomenon is 
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available for observation, to the range where direct 
measurements are unrealistic. Another empirical 
method to rank PEs, as well as to predict the lifetime 
in long-term creep processes was proposed by Moet 
with co-worker~.~ The method is based on the in- 
terpretation of creep as the limiting case of fatigue, 
when the ratio of the minimum to maximum stress 
approaches one. 

To our knowledge, Kostrov et a1." were the first 
to consider a crack with a cohesive zone in a vis- 
coelastic material. Later, theories of crack growth 
in viscoelastic media were advanced by many au- 
thors. The most detailed analysis of the problem 
was presented by Schapery'l (see also references 
contained therein). Theory'' is based on the follow- 
ing assumptions: (1) the stress field in the vicinity 
of the crack tip agrees with the Barenblatt cohesive 
zone model; (2) the classical correspondence prin- 
ciple for viscoelastic media is valid for the case of a 
moving crack; and (3) the crack grows, if and when 
the work done by the stress on the total elastic plus 
viscoelastic displacement at  the root of the cohesive 
zone, reaches the value of specific fracture energy. 
The latter is considered to be a material constant. 
The viscoelastic model" predicts a smooth crack 
propagation under the creep condition, i.e., the crack 
growth rate monotonically increases with time. 
However, as has been observed for many polymers 
and for PEs ~pecifically,'~*~~ the process of slow crack 
growth under both creep and fatigue conditions pro- 
ceeds in a discontinuous (stepwise) manner, i.e., the 
crack propagates via a succession of alternating ad- 
vances and arrests. The stress dependence of lifetime 
at fixed temperature established in Ref. 11 is similar 
to the dependence commonly observed in experi- 
ments with polymers, and can be approximately ex- 
pressed as a power law. However, the theoretical 
range of the exponent values differs appreciably from 
the experimental range reported for P E s . ~ - ~  

A new method of lifetime prediction for PEs 
under creep, which is presented in this paper, is 
based on the crack layer concept introduced by 
Chudn~vsky'~ and developed by him with co- 
worker~.'~-~' The crack layer (CL) is a system con- 
sisting of the closely coupled crack and process zone 
(PZ). The CL is characterized by the crack and PZ 
lengths and is therefore a system of two degrees of 
freedom. This results in the existence of various 
scenarios for the fracture process and more realistic 
modeling of slow crack growth behavior in PEs. 

In this work, the previously proposed empirical 
relations between time to failure of PEs, under creep 
at various temperatures and applied stress, are pre- 
sented and examined (Section 2). Then, a brief re- 

view of the CL kinetic model and its application for 
brittle fracture of PEs under creep conditions is 
presented (Section 3). The predictive power of the 
model is examined by comparing the theoretical 
time-stress-temperature relation with that obtained 
experimentally for a medium-density PE (Section 
4). Finally, a new procedure for lifetime prediction 
that consists of the experimental determination of 
the material parameters and the numerical simu- 
lation of the CL growth is detailed (Section 5). 

2. EMPIRICAL METHODS FOR LIFETIME 
PRE D ICTlO N 

Comprehensive investigations of various PES 'P~ ,~  has 
revealed the dependence of time to failure, tf, on 
stress u and temperature T schematically depicted 
in Figure 1 (T signifies temperature in degrees Kel- 
vin). Fracture in the ductile mode occurs as a result 
of macroscopic shear rupture, and the time to failure 
in this process is mainly determined by the rate of 
viscoelastic deformation. The brittle mode of failure 
is associated with slow growth of a crack induced 
by a preexisting defect. The lifetime in this case is 
the time during which the crack initiates and slowly 
propagates, up to the ultimate instability leading to 
catastrophic failure. Within both modes of failure, 
ductile and brittle, the time-stress relation at a fixed 
temperature can be approximately expressed in the 
form 

where in Ref. 1 u is the hoop stress in an internally 
pressurized pipe, and in Refs. 5 and 6 u is the tensile 
stress applied to a single-edge notched (SEN) spec- 

I Ductile 

\ \ 
log tf (min.) 

Figure 1 Schematic representation of experimental 
time-stress relations. 
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imen. In Eq. (2.1) means the decimal loga- 
rithm, and the symbols t j  and a represent dimen- 
sionless quantities, corresponding to  the time to  
failure in minutes and stress in MPa, respectively. 
The first term, A ,  in the right-hand side of relation 
(2.1) is a function of temperature T, while values of 
coefficient a for ductile and brittle modes seldom, 
but sometimes, depend on temperature. For exam- 
ple, coefficient a in the case of the P E  studied in 
Ref. 6 can be considered as temperature indepen- 
dent, but for another PE? within the brittle mode 
a changes noticeably; increasing from 3.0 to  4.8, 
when the temperature increases from 42 to  80°C. 
As seen from Figure 1, the values of coefficient a for 
ductile and brittle modes differ greatly (about 10 or 
even 15 times according to Refs. 5 and 6, respec- 
tively). It should be noted that as shown in Refs. 5 
and 6, there is a ductile-brittle transition zone, 
which has been reduced to a single point in Figure 
1. The stress corresponding to the intersection of 
the two branches, ductile and brittle in Figure 1, is 
called the critical stress and denoted by ac. As can 
be seen from Figure 1, the critical stress is a de- 
creasing function of temperature. 

If coefficient a is independent of temperature, the 
ductile and brittle branches in Figure 1 form two 
sets of parallel lines. Lines for different temperatures 
can now be combined into one line by appropriate 
shifts. In order to encompass both the ductile and 
brittle branches, the shifts have to  be directed along 
the arrow shown in Figure 1, i.e., the shifts contain 
two components, horizontal and vertical. The hor- 
izontal component is determined by the Arrhenius 
equation, according to which characteristic times tl 
and t2 of the process for temperatures Tl and T2, 
respectively, are connected 

where Q is the so-called activation energy (in J/mol) 
of the process, and R is the universal gas constant 
(R  = 8.314 J /K mol). According to the above equa- 
tion, the horizontal shift due to  temperature vari- 
ation from Tl to  T2 is written in the form 

A h =  0.43- - -- 
:(;2 ;J 

where the numerical factor is the value of log e. The 
vertical shift is expressed in terms of the tempera- 
ture dependence of the critical stress a,; certain con- 
siderations regarding the causes for this shift can 

be found in Refs. 7 and 8. According to  Ref. 5 ,  for 
temperatures higher than 7OoC, log a, is a linear 
function of inverse temperature T-'. Let c be the 
coefficient of T-' in this function. Then, the vertical 
shift 

can be represented as follows: 

(2.3) 

According to Ref. 5, c = 0.42 X lo3 K. If one assumes 
that shifts (2.2) and (2.3) are valid within the tem- 
perature range of interest (from 24 to 80"C, for ex- 
ample), then the lifetime at  a low temperature Tz 
(particularly, a t  room temperature) can be estimated 
on the basis of knowledge of the time-stress relation 
(2.1) for a high temperature TI:  

Shifts (2.2) and (2.3) were essentially employed by 
Lu and Brown for two kinds of PE.5,6 This allowed 
them to reduce the time-stress relations at  different 
temperatures to a single one for room temperature 
(24°C) and obtain, as  a result, a master curve of 
"log tf vs. log i?' (g is the applied stress u, normalized 
by critical stress ac). 

Popelar and c o - ~ o r k e r s ~ , ~  proposed different 
horizontal and vertical shifts: 

Ah = 0.43 X 0.1090(Tl - T2) 

AV = 0.43 X 0.0116(T1 - T2) 

(2.4) 

(2.5) 

as universal, for the medium-density and high-den- 
sity PEs that are commonly used in natural gas dis- 
tribution piping. To  determine how shifts (2.2) and 
(2.3) are related to shifts (2.4) and (2.5), note first 
that within the temperature range of 293-353 K (20- 
80"C), the approximate equality (with a maximum 
error of about 15%) exists: 

1 1  _- - -  - 0.96 x ~ o - ~ ( T ,  - T ~ )  
T2 Tl 
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Then, as follows from equating Eqs. (2.2) and (2.4), 
the required value of Q (activation energy) in Eq. 
(2.4) is = 94 kJ/mol (with the same maximum er- 
ror). For the PEs discussed, the value of the acti- 
vation energy for fracture processes is usually re- 
ported around 100 kJ/mol. Equating Eqs. (2.3) and 
(2.5) shows that the vertical shift proposed in Refs. 
7 and 8 corresponds to  the following value of coef- 
ficient c: 

Recall that as indicated above, the value of this coef- 
ficient for the material studied in Ref. 5 should be 
taken as 0.42 X lo3 K. 

Therefore, shifts (2.4) and (2.5) are essentially 
the same as shifts (2.2) and (2.3). Quantitatively, 
they should be considered as certain, empirically 
evaluated quantities, that reflect on average the re- 
lationship between time to failure and stress, a t  var- 
ious temperatures. In spite of a good average agree- 
ment, in some cases the lifetime predicted by the 
empirical method7,' may noticeably deviate from 
that measured directly. For example, for the P E  ex- 
amined in Ref. 6, the relation between lifetime and 
stress was experimentally found either a t  80 or a t  
24°C. In this case coefficient a from Eq. (2.1) did 
not depend on temperature. The prediction of brittle 
failure a t  24°C by means of shifts (2.4) and (2.5), 
from the data obtained a t  80"C, forecasts a lifetime 
10 times greater than the actual lifetime (see Ap- 
pendix A). For another PE,5 the lowest temperature 
under which the measurements of the lifetime were 
conducted was 42°C and the highest was 80°C. As 
noted above, according to direct observations, coef- 
ficient a within the brittle mode is temperature de- 
pendent. In this case the transition from 80 to 42"C, 
with shifts (2.4) and (2.5), a t  low stresses overesti- 
mates the lifetime more than 10 times (see Appendix 
B). The empirical methods5v6 and Refs. 7 and 8 rely 
substantially on the concept of the critical stress 6, 
of ductile-brittle transition, and on the temperature 
dependence of this stress. Above, a, has been defined 
as the ordinate of the boundary point between the 
ductile and brittle regions, on the graph of Figure 
1. However, there is no reason to consider this 
quantity as a material property that is independent 
of specimen geometry and loading conditions. In 
addition, since the measurements in long-term ob- 
servations have a large scatter, the critical stress 
can only be determined statistically. The most im- 
portant drawback of the method of temperature 
shifts for the stress and time axes is common to all 
empirical approaches: the limitation of the method's 

applicability, and the error resulting from its appli- 
cation, are a priori unknown. 

The following considerations are concerned with 
brittle fracture. From a practical point of view, it is 
the most important case, since the PEs in engi- 
neering applications serve mostly under relatively 
low stresses and undergo the brittle mode of failure. 
The method of lifetime prediction presented below 
is based on the mathematical modeling of slow crack 
growth in PEs under creep conditions and describes 
in a natural way a connection between short-term 
and long-term failure processes. An important dis- 
tinction of the new method is that it explicitly ac- 
counts for material properties, specimen geometry, 
and loading conditions. 

3. MODEL OF CRACK GROWTH 

In simple tension tests, most PEs exhibit cold draw- 
ing (necking) with constant drawing stress (Tdr and 
natural draw ratio A,. The cold drawing results in 
formation of a highly oriented material with prop- 
erties different from the original one. For different 
PEs, the drawing stress a t  room temperature varies 
approximately from 15 to 25 MPa, and the natural 
draw ratio changes from 3 to 10. 

In many engineering polymers, including PE, a 
slow growing crack is usually preceded by a P Z  
consisting of drawn material (Fig. 2). According to 
Ref. 14, the crack and PZ together form a CL. The 
simplified model of the crack layer developed in Refs. 
15-17 is characterized by two parameters, the crack 
length 1 and the crack layer length L (Fig. 3) .  The 
bulk material surrounding the CL is the original 
material, while the PZ consists of the drawn mate- 
rial. This material can be treated as a collection of 
separate fibers2-6 (see also Fig. 2) and can be modeled 
as a disconnected unidirectional continuum. As has 
been found by measurements,21s22 the stresses acting 
between the bulk material and PZ are distributed 
uniformly along their boundary. Under the creep 
condition these stresses are controlled by the draw- 
ing process and can be assumed to be equal to  the 
drawing stress, adr.  

The driving forces for the crack and P Z  advances 
have been introduced in Refs. 14 and 15, in agree- 
ment with the general principle of irreversible ther- 
modynamics: 

dG 
xp, = -- 

dG 
aL x,, = - - 

ai 
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Figure 2 
(a) the general view, (b) fibrillated material within the process zone. 

ESEM micrograph of the crack tip and the process zone developed under fatigue: 

where G is the Gibbs potential of the particular sys- l = l o  L = L o  a t t = O  
tem. Since no healing process exists within any 
presently known material, the crack and pz sizes 
cannot decrease. Therefore, it is assumed that Xc, 
= 0 and Xpz = 0 if the corresponding derivatives of 
G are not positive. According to Refs. 15 and 18, the 
process of CL propagation is governed by equations 

Below, only mode 1 loading is examined. The driving 
force for the crack advance is derived in the 
form15.1s,19 

XCR = J1 - 27’ 
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e ( t )  = c, + c,(t) 

I 1 

I 
1 I 

I 

0 

Figure 3 Schematic presentation of crack layer in PEs. 

or 

x,, = 0 (3.2') 

depending on whether the derivative of G with re- 
spect to 1 is positive or not. Above, 6, and 6 d r  rep- 
resent the elastic crack opening displacements 
(CODs) due to remote stress u, and traction (Tdr act- 
ing along the PZ boundary of the problem depicted 
in Figure 4. Since the PZ has the shape of a thin 
strip, the cut-out in Fig. 4 (a) can be modeled by the 
slit in Fig. 4 (b). Moreover, 

is the specific energy of drawing, y d r ,  normalized by 
the mechanical work of drawing, (T&( h - 1). Finally, 
y signifies the specific energy (per unit area) required 
for rupture of the PZ fibers and membranes. Some- 
times for convenience, J ,  and 2y in Eq. (3.2) are, 
respectively, referred to  as the active part of the 
driving force XcR and the resistance to  crack exten- 
sion. 

Fibers within the PZ experience viscoelastic de- 
formation, and as a result the specific fracture en- 
ergy, y, of the P Z  material decreases. The law of y 
evolution with time is derived below from the fol- 
lowing considerations. Let E, and c, be the elastic 
and viscoelastic deformation of the drawn material, 
so that the total strain is written in the form 

At the initial instant, the energy yo required for fiber 
rupture, is equal to the work done by the drawing 
stress b d r  on a certain critical viscoelastic strain eUc: 

For the current moment, the energy y can be defined 
as follows: 

We assume that the drawn material obeys the Max- 
well equation, i.e., the rate of viscoelastic deforma- 
tion is constant, due to the constancy of the stress 
(Tdr acting on the fibers. Then, the law of specific 
fracture energy evolution at  a point M within the 
PZ can be rewritten as 

where t is the present clock reading, t,(M) was the 
clock reading when the PZ tip passed through point 
M ,  and t, is the time interval during which any fiber 
can withstand stress (Tdr (the elapsed time until fiber 
creep rupture). Creep lifetime t ,  is considered to be 
a function of temperature T and the stress (Tdr. Ac- 
cording to the fluctuation theory of fracture devel- 
oped by Zhurkov et  al.,23 t, is the exponential func- 
tion 

I I 

> 

Figure 4 
COD and SIF: (a) plate with cut-out, (b) plate with slit. 

Boundary value problem for evaluation of 
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Q t, = fOexp - 
RT (3.4) 

in which the stress-dependent activation energy Q 
is expressed as 

In Eqs. (3.4) and (3.5), to is a characteristic time, QO 
is a constant part of the activation energy, and x is 
the coefficient that reflects the material microstruc- 
ture. 

The driving force Xp, for the P Z  advance is given 
by the expres~ ion '~~ '~  

or 

xp, = 0 (3.6') 

depending on whether the derivative of G with re- 
spect to L is positive or not. Above, K ,  and Kdr des- 
ignate the stress intensity factors (SIFs) at the CL 
tip due to remote stress u and traction c d r  acting 
along the PZ boundary (see Fig. 4). In Eq. (3.6), 

or E = -  EO 
1 - lJ2 

for plane stress and plane strain, respectively; Eo 
and v are Young's modulus and Poisson's ratio of 
the original material. 

If the driving forces equal zero, then the CL re- 
mains in a steady state, i.e., 

dl d L  - = o  - = o  
d t  d t  

The condition for a stationary PZ 

xp, = 0 

according to expression (3.6), results in two equa- 
tions: 

Each of them leads to a stationary (equilibrium) size 
of the CL at a prescribed crack length 1. The first 
gives the solution that coincides with the CL size in 
the Dugdale-Barenblatt (D-B) model and corre- 

sponds to an unstable state, while the second yields 
the solution Leq (smaller than the length for the D- 
B model, if T > O) at  which the PZ is in a stable 
state."j 

Equations (3.1), the right-hand sides of which are 
expressed by (3.2)-(3.2') and (3.6)-(3.6'), together 
with law (3.3) of rupture energy evolution are 
strongly nonlinear. The results presented below are 
based on the numerical solution of these equations. 
The fourth-order Runge-Kutta method can be used. 
At  the nth step of the numerical procedure, the sin- 
gular boundary value problem of linear elasticity for 
the current CL configuration, I" and L", and for the 
load shown in Figure 4, is solved. The solution re- 
sults in current values of CODs 6; and 6Zr, and of 
SIFs KZ and K&. The current value of the specific 
rupture energy yn, at the current crack tip l", is de- 
termined by Eq. (3.3). Then, the current values 
X& and Xbz, of driving forces Xc, and Xpz, are 
computed according to expressions (3.2) and (3.6), 
respectively. The next time step, is selected 
so that conditions 1"" I L"+l I Lt:' are satisfied, 
and the error for the step does not exceed the pre- 
scribed maximum allowable error. The numerical 
process is stopped, when even an infinitesimal time 
step results in a relatively very large (the same order 
of magnitude as the specimen width W) crack ad- 
vance. This signals instability (or the end) of the 
slow CL growth. The elapsed time until instability 
is called the lifetime, or the time to failure, and de- 
noted by tP 

The above numerical solution displays two types 
of CL behavior, depending on the particular values 
of the physical and geometrical quantities employed 
in the CL kinetic model. The first type [Fig. 5(a)] 
is a smooth CL growth. It occurs when the driving 
force Xc, is positive during the entire process, i.e., 
J ,  > y ( t )  for any time t. The second type [Fig. 5(b)] 
is a discontinuous (stepwise) CL advance, which 
consists of a succession of alternating initiations and 
arrests of the crack and PZ. [Please be aware that 
the time scale for Fig. 5(a) is different from that for 
Fig. 5(b).] Growth of the crack, with tip at  point x ,  
is initiated when the condition J1  = 2y(ti), ti > t ( x ) ,  
is met. At the beginning of each time step 

In the process of CL evolution, the P Z  size can be 
smaller than equilibrium (underdeveloped PZ) or 
equilibrium (developed PZ). For example, during the 
process depicted in Figure 5(a), the PZ lags behind 
its equilibrium size; while in the process shown in 
Figure 5(b) the PZ maintains the equilibrium size 
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4. TIME-STRESS-TEMPERATURE RELATION i 

Time 
Figure 5 
(b) discontinuous (stepwise). 

Two modes of crack layer growth: (a) smooth, 

almost all of the time. The relationship between a 
current PZ size and its equilibrium size, depends 
mainly on the ratio of kinetic coefficients kl and k2. 

Analysis of the kinetic model shows that for all 
smooth processes, the lifetime tf [see Fig. 5(a)] 
strongly depends on kinetic coefficients kl and k2. 
However, the time to failure in the stepwise pro- 
cesses [see Fig. 5(b)] depends only weakly on these 
coefficients. For such processes, the rate of CL 
growth is mostly determined by how much smaller 
J1 is than 2y0, i.e., how much time precedes an in- 
crement of crack extension. 

As numerous observations on PEs show, the 
quasi-brittle crack in PEs grows discontinuously 
under both constant and cyclic  loading^.'^,'^ For this 
reason, further modeling of the time-stress rela- 
tionship is based on the corresponding behavior of 
the CL kinetic model. A higher level of remote stress 
0, results in a more pronounced discontinuity of the 
slow crack growth. This means that the number of 
steps within the process decreases, and the size of 
each individual step increases, with increase of c. 
This is illustrated in Figure 6, where two processes 
of slow crack growth under tension are shown. Figure 
6(a) and (b) refer to  relatively low and high applied 
stresses, respectively [note that  the time scale for 
Fig. 6(a) is different from that for Fig. 6(b)]. These 
predictions of the model agree well with observa- 
tions.12 

A characteristic length scale I, of the kinetic model 
' is introduced as follows 

I t  is an important parameter that depends on prop- 
erties of the original and drawn materials. Two other 
material characteristics introduced in the previous 
section, the drawing stress cdr ,  and the rupture time 
t, of the drawn material, are used as scales of stresses 
and time, respectively. One more physical parameter 
of the kinetic model is the normalized drawing en- 
ergy ?. The kinetic model explicitly accounts for the 
system geometry (sizes of the plate and initial length 
of the notch), as well as the loading conditions (sim- 
ple or eccentric tension, pure or three-point bending, 
etc.). For simplicity, all further considerations in 
this study are confined to simple tension of a SEN 
specimen. 

Let T~ be the time to failure normalized by the 
rupture time t, of the drawn material, 6 be the ap- 
plied stress normalized by the drawing stress Odr, 

and 17 stand for the specimen sizes (the notch length 
and plate width), each normalized by the charac- 
teristic length 1,: 

Time 
Figure 6 Stress dependence of discontinuous crack 
layer growth: (a) low stress ( u  = 0.25 u ~ ) ,  (b) high stress 
( U  = 0.75 udr). 
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If the material properties, specimen geometry, and 
applied stress are prescribed, a computer simulation 
of slow CL growth can be constructed by means of 
the numerical solution of Eq. (3.1). Analyzing the 
data of such numerical experiments, we obtain the 
following approximate relation between the lifetime 
and applied stress: 

The quantities B and p are in general functions of 
l,, T, and q. Numerical experiments with the kinetic 
model allows one to evaluate these functions. Spe- 
cifically, our analysis shows that: (1) P weakly de- 
pends on T and can be considered to be a function 
of 1, and 7 only; (2) p varies between 2 and 5 for 
practical ranges of I ,  and q; (3) B can be decomposed 
into the sum 

i.e., for a given value of q (for given normalized sizes), 
curves B vs. 1, at various +, are identical in shape 
to each other. As follows from comparison of the PZ 
sizes observed in PEs and predicted by the CL 
model,17 the value of the normalized drawing energy 
T, is close to one. All of the above means that the 
quantities B and P, as functions of the material pa- 
rameters and specimen geometry, can be reduced to 
the form: 

It is important to emphasize that both the theoret- 
ical and experimental relations, (4.2) and (2.1), re- 
spectively, establish a power dependence of lifetime 
tf on applied stress a; and the range of exponent p, 
from 2 to 5, predicted by the kinetic model, coincides 
with the range of exponent CY observed for various 
kinds of PE.2-6 

The characteristic length I,, expressed by Eq. 
(4.1), is expected to be a function of temperature, 
since the material properties involved in this equa- 
tion are temperature dependent. Therefore, quan- 
tities B and p are functions of temperature, as well. 
Temperature dependence of the material parameters 
in Eq. (4.1), as well as such dependence for the re- 
laxation time t,, can be found in experiments with 
unnotched specimens, i.e., independently of a slow 
crack growth observation. In the present study, the 
material parameters needed for the model are re- 

constructed from certain experimental data on crack 
growth, because of lack of data regarding the tem- 
perature dependence of the creep and rupture prop- 
erties of the drawn material. First, the temperature 
dependence of exponent a for the particular material 
is determined. For example, the dependence can be 
found by a statistical analysis of the time-stress re- 
lationship at various temperatures reported for one 
of the PEs in Ref. 5 .  In this particular case, while 
the temperature increases from 42 to 80°C, exponent 
CY increases from 3.0 to 4.8. In order to coordinate 
theoretical prediction with experimental observa- 
tion, i.e., function P ( T )  with function CY(T), char- 
acteristic length 1, must be a certain decreasing 
function of temperature. This requirement results 
in a definite form of temperature dependence of ma- 
terial properties E, adr, and yo. Since drawing stress 

and Young's modulus E ,  decrease with temper- 
ature almost proportionally to each other,4 then it 
follows from expression (4.1) that fracture energy 
yo must decrease faster with temperature than the 
drawing stress. For another PE examined in Ref. 6, 
exponent CY is practically constant within the tem- 
perature range between 24 and 80°C. Hence, it fol- 
lows for this case that length scale l,, and as a result, 
ratio yO/ff&, are temperature independent. When the 
temperature dependence of the length scale 1, is es- 
tablished, the quantities B and in Eq. (4.2) are 
readily determined as functions of temperature: 

(the specimen geometry parameter q is prescribed). 
Accounting for expressions (3.4) and (3.5), we re- 

duce Eq. (4.2) to the following form: 

( (" - Xodr + b)  (4.3) tf = to - exp RT odr 

where b = B/log e. According to the previous defi- 
nitions, quantities b and are the kinetic model pa- 
rameters reflecting properties of the material and 
specimen geometry, while to, Qo, and X reflect the 
properties of the original and drawn materials only. 
Equation (4.3) is the time-stress-temperature re- 
lation resulting from the kinetic model of slow CL 
growth. 

If for a certain material and specimen geometry, 
exponent CY is temperature independent, then the 
kinetic model parameters B and 0 also do not depend 
on temperature. In this case the transition from one 
temperature to another, from TI  to T,, can be ex- 
pressed in the form 
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Figure 7 Temperature dependence: (a) crack layer 
parameters B and @, (b) drawing stress ndr. 

If the term with the activation energy Qo is consid- 
ered as a horizontal shift (along the axis of log t,), 
then the sum of the two following terms can be 
treated as a vertical shift (along the axis of log a). 
This last equation represents the vertical shift in 
terms of material parameters ad, and X. Remember 
that for the empirical methods discussed in Section 
2, the vertical shift was a function of the indeter- 
minate parameter at. 

Three material constants in Eq. (4.3) are left to 
be established characteristic time to, activation en- 
ergy Qo, and coefficient x. If activation energy Qo is 
taken as 100 kJ/mol (this value is reported as the 
average for PEs), then the other two parameters, to 
and x, can be determined from the data of experi- 
mental observations. The procedure for finding these 
parameters is described in Appendix C. 

In order to test the predictive power of the kinetic 
model, we employ the most comprehensive experi- 
mental data, which is reported in Ref. 5. The ex- 
periments were conducted on SEN tensile speci- 
mens, each with size lo = 3.5 mm and W = 10.0 mm. 
The material is the ethylene-hexene copolymer with 
4.5 butyl branches per 1000 C, M ,  = 15,000, M ,  
= 170,000, and density = 0.938 g/cm3. For this ma- 
terial, the yield stress a,,, at room temperature (24°C) 
equals 21.5 MPa. Since the drawing stress ad, is not 
reported, we assume adr N a,. The temperature de- 
pendence of ar is reported in Ref. 5, and the ad, tem- 
perature dependence follows that for aYz4 The model 
parameters are selected so that the lifetime's stress 
dependence, obtained on the basis of Eq. (4.3), and 
measured experimentally, agree for temperatures 50 
and 70°C (see Appendix C). This suggests the fol- 
lowing temperature dependence of the characteristic 
length: 

663 
log I ,  = -4.17 + - 

T 

Corresponding functions B and p of temperature are 
shown in Figure 7(a), and the remaining constants 
are evaluated as 

to = 6.46 X lo-'' min X = 0.63 X lop3 m3/mol 

The temperature dependence of the drawing stress 
(assumed equal to the dependence reported for 

a, in Ref. 5), is shown in Fig. 7(b). 
The data of the direct measurement~~*~ (points) 

and the theoretical predictions of Eq. (4.3) (lines) 
are combined in Fig. 8. The dashed lines correspond 
to the adjustment temperatures 70 and 50°C. The 



theoretical results agree with the experimental re- 
sults (within scatter of the data), not only at 60°C 
(the temperature of interpolation) but also at 80 and 
42°C (the temperatures of extrapolation). Experi- 
mental data for temperature 24°C does not exist. 
Evidently, the CL kinetic model correctly describes 
the stress lifetime relationships for brittle fracture 
at  various temperatures. Simultaneously, the ranges 
of the model parameters B and p, and the qualities 
of their dependencies on characteristic length 1*, in- 
dicate the possibility of a good description for each 
PE investigated in Refs. 2-6. 

Fig. 9 displays stress lifetime lines for room tem- 
perature (24°C) obtained by three different methods 
(see Appendix D). Line 1 results from the treatment 
proposed in Ref. 5. Line 2 was produced by the dou- 
ble shift Eqs. (2.4) and (2.5), acting on the 80°C 
data from Ref. 5. Line 3 was calculated by Eq. (4.3). 
Lines 1 and 3 are almost parallel, but the slope of 
line 2 is noticeably smaller because shifts (2.4) and 
(2.5) translate the slope of the 80°C line, to any 
other temperature. The predictions of the kinetic 
model and of method in Refs. 7 and 8 [Eqs. (2.4) 
and (2.5)] are similar, and forecast lifetimes some- 
what longer than those reported in Ref. 5. 

To conclude this section, note that in order to 
determine the lifetime prediction for a specimen of 
the same material, but with a different size, within 
the proposed framework it is only necessary to re- 
calculate the values of the kinetic model character- 
istics B and p in Eq. (4.3). For example, if for the 
specified specimen, the notch depth lo decreases from 
3.5 to 0.5 mm, then at room temperature (24°C) and 
within the applied stress range (0.2cdr - 0.4udr), the 
lifetime becomes 18-12 times longer. 

5. ACCELERATED TESTING FOR LIFETIME 

As stated above, all the material characteristics re- 
quired in the CL kinetic model can be determined 
from tests that do not involve slow crack growth. 
Two types of tests are needed for the material char- 
acterization. The first type are simple ramp tests, 
which provide Young's modulus Eo, Poisson's ratio 
v, drawing stress udrr natural draw ratio A, and 
drawing energy Tdr, at  various temperatures. The 
second type are creep tests of the drawn fibers under 
(Tdr. The characteristic time to, activation energy Q 
= Qo - xudr(T), and specific rupture energy yo(T)  
should be extracted at  various temperatures. Both 
test types can be performed on unnotched speci- 
mens. 
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Figure 9 Predictions of lifetime at room temperature. 

The determined temperature dependence of the 
material characteristics leads to the determination 
of the temperature dependence of the characteristic 
length 1, and rupture time t,. Then, computer sim- 
ulations of slow crack growth based on the CL ki- 
netic model result in the determinations of param- 
eters B and p in Eq. (4.3), as functions of temper- 
ature. Thus, all quantities in Eq. (4.3) are known, 
and predictions of lifetime can be computed for a 
range of temperatures. 

6. SUMMARY 

1. Brittle fracture, resulting from slow crack 
growth in PEs can be adequately modeled us- 
ing the kinetic equations of CL growth. The 
CL kinetic model realistically describes the 
discontinuous (stepwise) process commonly 
observed in PEs. 

2. At  relatively low stresses, the CL kinetic model 
predicts a power dependence of the time to 
failure tf on applied stress u: 

tf cc u-p 

where exponent ranges from 2 to 5. This p 
range is coincident with that observed exper- 
imentally for PEs. 

3. The connections between the lifetime stress 
relations at various temperatures are strongly 
associated with the temperature dependence 
of time to failure described by the fluctuation 
theory of fracture. According to the theory, the 
time to rupture of the drawn fibers, t,, depends 
on temperature as 
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4. 

5 .  

6. 

QO - x g d r ( T )  

R T  
t, = toexp 

where to, Qo, and x are the parameters of the 
drawn material, gdr is the temperature depen- 
dent stress acting on the fibers, R is the uni- 
versal gas constant, and T is the temperature 
in degrees Kelvin. 
The time-stress-temperature correspondence 
resulting from the CL kinetic model, can be 
presented in the following form: 

( " )-' (Qo - Xgdr + b)  
RT 

t,= to - exp 
Odr 

Parameters b and /3 are obtained from the nu- 
merical solution of the CL kinetic equations 
for the particular boundary value problem. 
Both parameters are usually, but not always 
temperature independent. 
Lifetime prediction, within the framework of 
the proposed approach, is reduced to  experi- 
mental measurements of the material prop- 
erties, and computer simulations of slow crack 
growth using the determined material param- 
eters, along with the other particular condi- 
tions such as temperature, specimen geometry, 
shape, and magnitude of prescribed loading. 
The tests for evaluation of the material prop- 
erties use smooth specimens, and require rel- 
atively short-term observations. Thus, the 
lifetime prediction method proposed in this 
study can be used as an accelerated test for 
the determination of PE performance. 

7. CONCLUDING REMARK 

The dependence of the kinetic model behavior on 
temperature mainly results from the temperature 
dependence of the time to  rupture t, of the drawn 
fibers. An increase in temperature causes a decrease 
in the rupture time. A reduction in rupture time 
can be achieved by the introduction of other agents, 
such as fatigue loading, chemical exposure, etc. 
These agents, in combination with slow crack 
growth modeling, provide the possibility for devel- 
oping alternative accelerated tests for the brittle 
fracture of PEs. 

APPENDIX A 

According to  Figure 7 of Ref. 6, a t  80°C 

and a t  24°C 

Here and after, time is measured in minutes and 
stress in MPa. Taking into account Eq. (A.l), the 
transition from 80 to 24OC by means of shifts (2.4) 
and (2.5) is expressed as 

log tf = 4.0 + (0.109 + 2.6 

X 0.0116)AT log e - 2.6 log CT 

where A T  = 56 K. So, the shifts result in the fol- 
lowing time-stress relation a t  24°C: 

log ti = 7.4 - 2.6 log CT 64.3) 

Comparison of Eqs. (A.2) and (A.3) shows that 
method of Refs. 7 and 8 leads to the error 

log ti - log tf = 1.0 

i.e., the prediction of the method is 10 times as big 
as direct measurements. 

APPENDIX B 

As follows from Figure 3 of Ref. 5, a t  80°C 

and a t  42°C 

Shifts (2.4) and (2.5) from 80 to 42°C result in the 
time-stress dependence: 

log t; = 9.2 - 4.8 log CT (B.3) 

If CT = 5 MPa, then the lifetime (B.2) measured 
directly in Ref. 5 and the lifetime (B.3) predicted 
on the basis of method in Refs. 7 and 8 practically 
coincide; but a t  lower stresses lifetime (B.3) can 
exceed lifetime (B.2) more than 10 times [e.g., at 
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u = 1 MPa, lifetime (B.3) is 20 times as  much as  
lifetime (B.2)]. 

APPENDIX C 

The time-stress relation5 can be approximated by 
(see Fig. 3 in Ref. 5 )  

log tf = 6.4 - 3.4 log u (C.1) 

for 70"C, and by 

for 50°C. Our kinetic model provides a time-stress 
relation for the selected specimen geometry as fol- 
lows: 

QO - Xudr log 
RT 

log tf = log to + 

Let 1, be represented as the following function of 
temperature: 

log 1, = 0 0  + yl(T)u 103 

where wO and w1 are unknown coefficients. 'These 
coefficients are selected so that the values of function 
0 in Eq. (C.3) coincide with the values of the coef- 
ficients of log u in Eqs. (C.1) and (C.2). According 
to  the numerical solution of the kinetic model equa- 
tions, ,6 takes values 3.4 and 3.0, if log l, is equal to 
-2.24 and -2.12, respectively. So, the first value of 
log 1, corresponds to 103/T = 2.915 (70"C), and the 
second value to 103/T = 3.096 (50°C). The system 
of two equations with respect to two unknowns 
yields 

W O  = -4.17 ~1 = 0.663 

Now B and in Eq. (C.3) have been determined as 
functions of temperature. This means the time- 
stress relation (C.3) of the kinetic model contains 
three unknown constants to, Qo, and x, and the 
known functions of temperature [u& (actually UJ is 
reported as a function of temperature in Ref. 51. If 
one accepts 

QO = 100 kJ/mol 

and requires lifetimes (C.3) at 70 and 50°C to equal 
lifetimes (C.1) and (C.2), respectively, then the re- 
maining two constants will be 

to = 6.46 X min X = 0.63 X m3/mol 

Note that if coefficient a in Eq. (2.1) for the partic- 
ular material does not depend on T, then 1, is de- 
termined by the condition 

B and /3 are taken as constants, and the procedure 
for finding to and X remains the same. 

APPENDIX D 

The time-stress relation a t  24°C resulting from the 
data reported in Ref. 5 can be written as: 

log tf = 9.0 - 3.3 log u 

Let shifts (2.4) and (2.5) be employed to obtain the 
time-stress relation for 24"C, from equation (B. l )  
for 80°C. Then, 

log tf = 6.4 + (0.109 + 4.8 

X 0.0116)AT log e - 4.8 log u 

where A T  = 56 K; or 

log t, = 10.4 - 4.8 log u 

With the constants and functions determined in 
Appendix C, Eq. (C.3) establishes the following 
time-stress relation for 24°C: 

This is the lifetime prediction based on the CL ki- 
netic model. 
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